首页
VaporFund中文网
栏目分类

VaporFund中文网

你的位置:BAN中文网 > VaporFund中文网 > 请教:小儿补液知识!!

请教:小儿补液知识!!

发布日期:2025-01-04 10:26    点击次数:194
为什么等渗性脱水用1/2张的液体,不用等张的液体?再请教一下小孩补糖,补盐的相关知识!谢谢!!yzf111:希望你能先找本儿科教材看看。我看了下书还是搞不懂呀 等渗性脱水相当于丢失的是等渗液 那补充的也应该是等张液体呀 为什么要用半张的液体呢 请主任解析///。。。液体疗法 液体疗法的目的是纠正水、电解质和酸碱平衡紊乱,以恢复机体的正常生理功能。补液方案应根据病史、临床表现及必要的实验室检查结果,综合分析水和电解质紊乱的程度、性质而定。首先确定补液的总量、组成、步骤和速度。补液总量包括补充累积损失量、继续损失量及供给生理需要量三个方面。 1.补充累积损失量 指补充发病后至补液时所损失的水和电解质量。(1)补液量:根据脱水严重程度而定。原则上轻度脱水补50ml/kg,中度脱水补50~100ml/kg,重度脱水补100~120ml/kg。实际应用时一般先按上述量的2/3量给予。(2)补液成分: 根据脱水性质而定。一般而论,低渗性脱水补充高渗溶液,等渗性脱水补充等张溶液,高渗性脱水补充低渗溶液。若临床判断脱水性质有困难,可先按等渗性脱水处理。有条件者最好测血钠含量,以确定脱水性质。(3)补液速度: 累积损失量应在开始输液的8~12小时内补足,重度脱水或有循环衰竭者,应首先静脉推注或快速静脉滴入以扩充血容量,改善血液循环及肾功能,一般用 2:1等张含钠液(2份生理盐水加1份1. 4%碳酸氢钠)20ml/kg,总量不超过300ml,于30~60分钟内静脉推注或快速滴入。 2.补充继续损失量 指补液开始后,因呕吐腹泻等继续损失的液体量。应按实际损失量补充,但腹泻患儿的大便量较难准确计算,一般根据次数和量的多少大致估计,适当增减。补充继续损失量的液体种类,一般用l/3张~1/2张含钠液,于24小时内静脉缓慢滴入。 3.供给生理需要量 小儿每日生理需水量约为60~80ml/kg,钠、钾、氯各需1~2mmol/kg。这部分液体应尽量口服补充,口服有困难者,给予生理维持液(1/5张含钠液十0.15%氯化钾),于24小时内均匀滴入。 在实际补液中,要对上述三方面需要综合分析,混合使用。对腹泻等丢失液体引起脱水的补液量:一般轻度脱水约90-120ml/kg;中度脱水约120~150ml/kg;重度脱水约 150-180ml/kg。补液成分:等渗性脱水补1/2张含钠液;低渗性脱水补2/3张合钠液;高渗性脱水补1/3张含钠液,并补充钾,再根据治疗反应,随时进行适当调整。 -------------------------------------------------------------------------------- 摘自朱延力主编《儿科护理学》儿科补液不仅仅是补液本身,还要考虑体内血钠的总量问题,否则钾钠进去容易,出来就难啦.累积损失量的补充[2](一)补液量 根据脱水程度决定。轻度脱水应补50ml/kg;中度脱水50~100ml/kg;重度脱水100~120ml/kg。(二)补液种类 所用输液的种类取决于脱水的性质。一般而论,低渗性脱水补2/3张含钠液,等渗性脱水补1/2张含钠液,高渗性脱水补1/3~1/4张含钠液。这是因为细胞外液中的钠除因腹泻通过消化道丢失以外,还有一部分钠因细胞内液丢失钾后而进入细胞内,补钾后,进入细胞内液中的钠又可返回到细胞外液中,故补液成分中含钠量可稍减少。——牵强!若不补钾呢?!即使补钾的话补得也很少,怎么足以减少一半的补钠量?补充累积损失量[3]1.补液量 根据脱水程度决定。轻度脱水约50ml/kg,中度脱水50~100ml/kg,重度脱水100~120ml/kg。一般按上述的2/3量给予。这是因为细胞外液的钠不仅通过消化道等途径丢失,而且由于细胞同时失钾,有一部分钠进入细胞内液进行代偿(细胞内液钾缺乏,钠过剩);当补钾时,随着细胞内液钾的逐渐恢复,其过剩的钠又返回细胞外液,故补充的含钠液量可稍减,以免细胞外液过度扩张。——二版书用此“补钾理论”解释“等渗性脱水补1/2张含钠液”,在“量”上有点勉强;三版书用此“补钾理论”解释“补充累积损失量应给2/3液量”,在“量”上似乎有点合理了,但理论显得更有点混乱了。因为按此理论,完全可以按全液量计算补液量、按总钠量的2/3计算补钠量,这样既不要少补水,也不会多补钠。何必为了少补一点钠而限制水的补充!2.溶液种类 根据脱水性质决定。(1)等渗性脱水 用等张含钠液。(2)低渗性脱水 用高张含钠液,相当于纠正体液低渗(低钠血症)所需钠量加纠正等渗脱水所需等张含钠液量。(3)高渗性脱水 用低张含钠液,相当于纠正体液高渗(高钠血症)所需水量加纠正等渗脱水所需等张含钠液量。……婴儿腹泻则需补充三项需要量(生理需要量、异常继续损失量及累积损失量)。在实际补液时要进行综合分析,分别计算,混合使用。对于腹泻患儿,虽然单纯纠正等渗性、低渗性和高渗性脱水要分别用等张、高张和低张含钠液,但还需同时补充生理需要和异常继续损失等所需的水和电解质等,通常概括上述三项需要,对腹泻等失液引起的等渗性脱水给1/2张含钠液,低渗性和高渗性脱水分别给2/3张和1/3张含钠液,并补充钾。再根据治疗后的反应,随时进行适当调整。——虽然均为张家骧所写,虽然均较牵强,但三版书的“平均理由”与二版书的“补钾理由”也有本质的不同。按三版书的理论,等渗性脱水时,第一天给的所有液体均要配成1/2张含钠液(若生理需要量已能经口补充、继续损失量明显减少,那么等渗性脱水就真的就要用等张含钠液来补充累积损失量?!);而按二版书的理论,等渗性脱水时,仅在补充累积损失量时才用1/2张含钠液,补充继续损失量可用1/3~1/2张含钠液,供给生理需要量时可用1/4~1/5张含钠液。补充累积损失量[4]1.补液量 根据脱水程度决定。轻度脱水约50ml/kg;中度脱水50~100ml/kg;重度脱水100~120ml/kg。先按2/3量给予。因为脱水时细胞内液(含钾液)亦损失,需用含钾液补充;由于细胞同时失钾,故细胞外液的钠不仅通过消化道等途径丢失,有一部分钠亦进入细胞内液进行代偿,当补钾时,随着细胞内液钾的逐渐恢复,钠又重返回细胞外液,故补充的含钠液量不宜过多;……。2.补液成分(1)等渗性脱水:其钠、水按比例丢失,故这一部分应使用等张溶液补充。(2)低渗性脱水:……用高渗液体补充,……。(3)高渗性脱水:……用低渗液体补充,……。……婴儿腹泻则需补充三项需要量(生理需要量、异常继续损失量及累积损失量)。在实际补液时要进行综合分析,分别计算,混合使用。对于腹泻患儿,虽然单纯纠正等渗性、低渗性和高渗性脱水要分别用等张、高张和低张含钠液,但是,因为还需同时补充生理需要和异常继续损失等所需的水和电解质等,通常概括上述三项需要,对腹泻等失液引起的等渗性脱水给1/2张含钠液,低渗性和高渗性脱水分别给2/3张和1/3张含钠液,并补充钾。再根据治疗后的反应,随时进行适当调整。——四版书与三版书个别文字不同,总的意思一模一样。补充累积损失量[5]1.定输液量 补液量根据脱水程度决定。轻度脱水约50ml/kg;中度脱水50~100ml/kg;重度脱水100~120ml/kg。先按2/3量给予。——未再讲理由。2.定输液种类 所用输液的种类取决于脱水的性质。通常对低渗性脱水应补给2/3张含钠液;等渗性脱水补给1/2张含钠液,高渗性脱水补给1/3~1/5张含钠液。这是因为细胞外液中的钠除因腹泻通过消化道丢失以外,还有一部分钠在脱水过程中因细胞内液丢失钾而进入细胞内,经补钾治疗后进入细胞内液中的钠又返回到细胞外液中,故补液成分中含钠量可稍减。——五版书又回到二版书的理论上。补充累积损失量[6]根据脱水程度及性质补充:即轻度脱水约30~50ml/kg;中度为50~100ml/kg;重度为100~150ml/kg。通常对低渗性脱水补2/3张含钠液;等渗性脱水补1/2张含钠液;高渗性脱水补1/3~1/5张含钠液。——6版书干脆不再解释原因!补充累积损失量[n]一般而论,对于腹泻病而言,低渗性脱水补2/3张含钠液,等渗性脱水补1/2张含钠液,高渗性脱水补1/3~1/4张含钠液。这是因为大多腹泻液Na+ 仅10~90mmol/L[10](如产毒型大肠杆菌肠炎:Na+ 53mmol/L,轮状病毒肠炎:Na+ 37mmol/L[3]),故腹泻时Na+的丢失比水的丢失来说相对较少,血浆Na+开始逐渐缓慢升高,而此时细胞内Na+水平尚在正常范围,故血浆升高的Na+进入细胞内,使血浆中Na+在大多数情况下仍可保持在正常范围内,呈等渗性脱水。故大多腹泻病等渗性脱水时,Na+与水的并非等比例丢失,而是Na+的丢失相对较少,故可补充低张含钠液。补低张含钠液时,血浆Na+开始逐渐缓慢降低,腹泻时细胞内升高的Na+则又回到血浆。Bohn认为过去40年儿科常规应用低渗液体治疗必须重新评估,建议入院时即给于等渗或高渗液体[7,8]。当某些情况下(如脑水肿),出现真正的低钠血症时,就应该用高渗液体[7]。Gaoxy认为在烫伤时,烫伤渗出液(Na+ 140mmol/L[6])的钠、水是按比例丢失的,可补等渗液体[n]。本科阶段学第二版,住院医阶段培训用第三版,考研考第四版,毕业考试看第五版,现在讲课讲第6版。花了几天时间,录完上述藏书有关补液的内容,供大家全面了解时参阅。另:现征第一版儿科学有关补液的内容,并诚征第一版儿科学书,价格可议!Email:[email protected] ???.液体疗法.见:???,主编.儿科学.第一版.北京:人民卫生出版社,1979.?-?.2 张家骧.液体疗法.见:宋名通,主编.儿科学.第二版.北京:人民卫生出版社,1990.57-58.3 张家骧.液体疗法.见:左启华,主编.儿科学.第三版.北京:人民卫生出版社,1993.68-71.4 张家骧.液体疗法.见:王慕逖,主编.儿科学.第四版.北京:人民卫生出版社,1996.48-50.5 欧弼悠.液体疗法.见:王慕逖,主编.儿科学.第五版.北京:人民卫生出版社,2000.50-52.6 杜立中.液体疗法.见:杨锡强,易著文,主编.儿科学.第6版.北京:人民卫生出版社,2004.51-53.7 汪薇,虞佩兰.关于小儿脑水肿的治疗问题.中国实用儿科杂志,2001,16(9):565-568.8 Bohn DJ.Problems associated with intravenous fluid administration in children:do we have the right solutions? Curr Opin Pediatr, 2000, 12(3):217.n gaoxy.液体疗法.见:,主编.儿科学.第n版.北京:人民卫生出版社,2046.x-y.第6版《实用儿科学》亦未给出合理解释。Nelson Textbook of Pediatrics(16th ed),Part VII - Pathophysiology of Body Fluids and Fluid Therapy,Chapter 54 - Principles of Therapy[10].Correction of DeficitsIsonatremic Dehydration. In isonatremic dehydration, the net loss of isotonic fluid from the body produces clinical manifestations resulting predominantly from depletion of extracellular fluid (ECF) compartments such as plasma. Because there is considerable movement of extracellular sodium into cells to compensate for intracellular potassium depletion, it has been argued that only two thirds of the apparent net losses should be replaced.——与三、四版《儿科学》类似,牵强地解释了给予总量2/3的原因,仍未解释给予1/2张的原因。 This approach has been validated by balance studies indicating that, in moderately to severely dehydrated children, the net external losses are about 10 mEq of sodium per 100 mL of water. Others have argued that isotonic solutions are indicated for the immediate restoration of ECF volume, because movement of sodium from intracellular spaces is gradual and complete only with full restoration of intracellular potassium levels, a process that may take several days. The net surplus of sodium provided through this approach rarely leads to elevated serum sodium values and, in the presence of normal renal function, is eliminated as sodium shifts from the intracellular compartment.——“也有人认为应该直接给等张溶液,多给的这点钠很少会引起血清钠升高,更何况还有肾脏强大的代偿功能。”不过,不多给这点钠不更好吗?!Table 54-3 indicates both approaches to treatment and estimations of the range of sodium defidt in a child with moderate to severe dehydration.——果然是将全天需补充的所有液体均配成1/2张含钠液。 Full repletion of defidt is calculated over 24 hr, with one half provided in the first 6-8 hr of therapy. Initial rehydration with fluid boluses is subtracted from the totals for the first 8-hr period. Some experts propose replacement of deficit in 8-12 hr if patients are not hypenatremic. Maintenance requirements exist on an hourly basis and must be met regardless of the deficit and ongoing losses. Certain conditions that may affect insensible water loss, renal water needs, or changes in normal sodium and potassium maintenance requirements can modify these recommendations. For example, a patient with obstructive uropathy and renal salt wasting requires higher amounts of daily sodium as maintenance needs. Similarly, a hyperthermic individual requires provision of more fluid for insensible water loss, and a child with a renal concentrating defect requires more fluid for renal water losses. Ongoing losses represent estimates of continued pathologic losses. In Table 54-3, ongoing stool losses reflect estimates of fluid and electrolyte losses occulting during the first 24 hr of care (see Table 54-2). The patient must be observed carefully, because losses may be less than or more than expected; not recognizing the latter may lead to serious delays in restoration of the ECF volume. If necessary, losses should be measured and replaced more frequently than every 8 hr as the patient's clinical conditinn dictates.10 Adelman RD, Solhaug MJ. Principles of Therapy. In: Behrman RE, Kliegman RM, Jenson HB, ed. Nelson Textbook of Pediatrics. 16th ed. Philadelphia: WB Saunders, 2000. 215-218.Table 54-2 screen.width-333)this.width=screen.width-333" width=640 height=433 title="Click to view full 1.jpg (690 X 467)" border=0 align=absmiddle>Table 54-3 screen.width-333)this.width=screen.width-333" width=640 height=386 title="Click to view full 2.jpg (690 X 417)" border=0 align=absmiddle>Nelson Textbook of Pediatrics(17th ed),Part 7 - Pathophysiology of Body Fluids and Fluid Therapy,Chapter 45 - Electrolyte and Acid-Base Disorders [11],45.3 Sodium,HYPONATREMIA,Etiology and Pathophysiolgy.……However, most fluid that is lost has a lower sodium concentration than plasma so would actually cause hypernatremia if the patient only has fluid loss. For example, viral diarrhea has, on average, a sodium concentration of 50 mEq/L. Hypernatremia does not occur because the patient drinks a low sodium–containing fluid such as formula or water.——有点道理!不过没补低张液体之前更常见高钠血症吗?实际上不是!那么肯定还有“进入细胞内”这个重要的因素! By replacing diarrheal fluid, which has a sodium concentration of 50 mEq/L, with formula, which has only about 10 mEq/L of sodium, there is a reduction in the sodium concentration. Intravascular volume depletion interferes with renal water excretion, the body's usual mechanism for preventing hyponatremia. The volume depletion stimulates ADH synthesis, resulting in renal water retention in the collecting duct. In addition, volume depletion decreases the GFR and enhances water reabsorption in the proximal tubule, which reduces water delivery to the collecting duct.——当然,肾脏代偿似乎是最为重要的因素!Diarrhea due to gastroenteritis is the most common cause of hypovolemic hyponatremia in children. Emesis causes hyponatremia if the patient takes in hypotonic fluid, either intravenously or enterally, despite the emesis. However, most patients with emesis have either a normal sodium concentration or hypernatremia. Burns may cause massive losses of an isotonic fluid and volume depletion. Hyponatremia develops if the patient receives hypotonic fluid. Losses of sodium from sweat are especially high in children with cystic fibrosis, aldosterone deficiency, or pseudohypoaldosteronism, although high losses can occur simply due to a hot climate. Third space losses are isotonic and can cause significant volume depletion, leading to ADH production and water retention, which can cause hyponatremia if the patient receives hypotonic fluid. In diseases with volume depletion due to extrarenal sodium loss, the urine sodium should be low (<10 mEq/L) as part of the renal response to maintain the intravascular volume. The only exceptions are diseases with both extrarenal sodium losses and renal losses: adrenal insufficiency and pseudohypoaldosteronism.11 Greenbaum LA. Electrolyte and Acid-Base Disorders. In: Behrman RE, Kliegman RM, Jenson HB, ed. Nelson Textbook of Pediatrics. 17th ed. Philadelphia: WB Saunders, 2004. 191-242.Nelson Textbook of Pediatrics(17th ed),Part 7 - Pathophysiology of Body Fluids and Fluid Therapy,Chapter 47 - Deficit Therapy[9].Calculation of Deficits.The child with dehydration has lost water; there is almost always a concurrent loss of sodium and potassium. Most patients have isotonic dehydration and therefore have normal serum sodium values. The guidelines in Box 47–2 are used for calculating the deficits in isotonic dehydration due to gastroenteritis.The water deficit is the percent dehydration multiplied by the patient's weight. The sodium and potassium deficits are derived from the water deficit (see Box 47–2 ).Approach to Dehydration.The child with dehydration requires acute intervention to ensure that there is adequate tissue perfusion. This requires restoration of the intravascular volume with an isotonic solution such as normal saline (NS) or Ringer lactate. The child is given a fluid bolus, usually 20 mL/kg, over about 20 min——国内扩容:30~60分钟. The child with mild dehydration does not usually require a fluid bolus. In contrast, the child with severe dehydration may require multiple fluid boluses and may need to receive the boluses at a faster rate.Blood, 5% albumin, and plasma are occasionally used for fluid boluses. In general, however, normal saline is satisfactory, with both less infectious risk and lower cost. Blood transfusion is indicated in the child with significant anemia or blood loss. Plasma is useful for children with a coagulopathy. The child with hypoalbuminemia may benefit from 5% albumin, although there is evidence that albumin infusions increase mortality in adults.The initial rehydration is complete when the child has an adequate intravascular volume. Typically, the child will have some general clinical improvement, including a lower heart rate, a normalization of the blood pressure, improved perfusion, and a more alert affect.When there is adequate intravascular volume, it is appropriate to plan the fluid therapy for the next 24 hr. The general approach is outlined in Box 47–3 . In isotonic dehydration, the entire fluid deficit is corrected over 24 hr. The child receives normal maintenance fluids and the fluid deficit. The total amount of water and electrolytes are added together and then an appropriate fluid is selected. For the patient with isotonic dehydration, D5 ½ normal saline with 20 mEq/L KCl is usually an appropriate fluid.——也未解释原因! For a child weighing less than 10–20 kg with only mild dehydration, a reduction of the sodium concentration is usually reasonable (¼ NS) because the majority of the administered fluid is maintenance fluid. Children with mild dehydration do not require intravenous therapy unless enteral therapy is not possible (see Chapter 48 ). As detailed herein, the potassium concentration may need to be decreased or, less commonly, increased depending on the clinical situation. Potassium is not usually included in the intravenous fluids until the patient voids. Half of the total fluid is given over the first 8 hr; previous boluses are subtracted from this volume. The remainder is given over the next 16 hr.It is important to consider ongoing fluid losses of the patient. For example, the child with copious diarrhea must receive an additional replacement solution, or the rehydration will not be complete (see Chapter 46 ).Box 47-2. Calculation of Deficit Water and ElectrolytesWATER DEFICIT Percent dehydration × weightSODIUM DEFICIT Water deficit × 80 mEq/LPOTASSIUM DEFICIT Water deficit × 30 mEq/LBox 47-3. Fluid Management of DehydrationRestore intravascular volume Normal saline: 20 mL/kg over 20 min (Repeat until intravascular volume restored——国内很少强调)Calculate 24-hr water needs Calculate maintenance waterCalculate deficit waterCalculate 24-hr electrolyte needs Calculate maintenance sodium and potassiumCalculate deficit sodium and potassiumSelect an appropriate fluid (based on total water and electrolyte needs) Administer half the calculated fluid during the first 8 hr, first subtracting any boluses from this amountAdminister the remainder over the next 16 hrReplace ongoing losses as they occurMonitoring and Adjusting Therapy.The formulation of a plan for correcting a child's dehydration is only the beginning of management. All calculations in fluid therapy are only approximations. This is especially true with the assessment of percent dehydration. It is equally important to monitor the patient during treatment and to modify therapy based on the clinical situation. ——国内很少强调The cornerstones of patient monitoring are listed in Box 47–4 . The patient's vital signs are useful indicators of intravascular volume status. The child with a decreased blood pressure and an increased heart rate will probably benefit from a fluid bolus. The central venous pressure is an excellent indicator of fluid status in the critically ill child.The patient's intake and output are critically important in the dehydrated child. The child who, after 8 hr of therapy, has more output than input due to continuing diarrhea needs to be placed on a replacement solution. See Chapter 46 guidelines for selecting an appropriate replacement solution. The urine output and urine specific gravity are useful for evaluating the success of therapy. The presence of a good urine output indicates that rehydration has been successful. This is supported by a decreasing urine specific gravity. For example, if the urine specific gravity is less than 1.005 and the patient is clinically well hydrated, it may be appropriate to decrease the intravenous fluid rate.The presence of signs of dehydration on physical examination suggests the need for continued rehydration. In contrast, signs of fluid overload, such as edema or pulmonary congestion, are present in the child who is overhydrated. An accurate daily weight measurement is critical for management of the dehydrated child. There should be a gain in weight during successful therapy.At least daily electrolyte measurements are appropriate for any child who is receiving intravenous rehydration. These children are at risk for disorders of sodium, potassium, and acid-base. It is always important to look at trends. For instance, a sodium value of 144 is normal. Yet, if the sodium concentration was 136 mEq/L 12 hr earlier, then there is a distinct risk that the child will be hypernatremic in 12 or 24 hr. It is advisable to be proactive in adjusting fluid therapy. 9 Greenbaum LA. Deficit Therapy. In: Behrman RE, Kliegman RM, Jenson HB, ed. Nelson Textbook of Pediatrics. 17th ed. Philadelphia: WB Saunders, 2004. 245-249.补充累积损失量[n]一般而论,对于腹泻病而言,低渗性脱水补2/3张含钠液,等渗性脱水补1/2张含钠液,高渗性脱水补1/3~1/4张含钠液。这是因为大多腹泻液Na+ 仅10~90mmol/L[10](如产毒型大肠杆菌肠炎:Na+ 53mmol/L,轮状病毒肠炎:Na+ 37mmol/L[3]),故腹泻时Na+的丢失比水的丢失来说相对较少,血浆Na+开始逐渐缓慢升高,而此时细胞内Na+水平尚在正常范围,故血浆升高的Na+进入细胞内,使血浆中Na+在大多数情况下仍可保持在正常范围内,呈等渗性脱水。故大多腹泻病等渗性脱水时,Na+与水的并非等比例丢失,而是Na+的丢失相对较少,故可补充低张含钠液。补低张含钠液时,血浆Na+开始逐渐缓慢降低,腹泻时细胞内升高的Na+则又回到血浆。结合Nelson Textbook of Pediatrics[11]:体液的减少刺激ADH合成,集合管对水的保留能力增加。此外,体液的减少降低GFR、促进近端小管对水的重吸收。所以肾脏强大的代偿能力也是腹泻时Na+的丢失比水的丢失来说相对较少,但大多数情况下,血清钠常在正常范围的重要原因。所以尽管是等渗性脱水,实际Na+的丢失相对较少,可补1/2张含钠液。这个问题貌似简单,其实很不简单!累积损失量的补充(上述内容的整理) 累积损失量的补充.doc (83.0k)下载后好好研究。谢谢!四句话 先快后慢 先浓后淡 见尿补钾 适时调整好好学习一下!这是因为细胞外液中的钠除因腹泻通过消化道丢失外,还有一部分钠在脱水过程中因细胞内液丢失钾而进入细胞内,经补钾治疗后进入细胞内液的钠又返回到细胞外液中,故补液成分中含钠量可稍低.但临床上判断脱水性质有困难时,可先按等渗脱水补充.我认为补半张液的根本原因在于儿童的肾脏浓缩稀释功能较成人有欠缺,尤其在婴幼儿,浓缩功能显著低于成人.微量用药通用公式微量用药需写明液体量、用药量、输液速度三个量。现总结出一个微量用药通用公式:A•B•60=(X/Z)•Y,其中两个已知量:体重A(kg)、每公斤每分钟剂量B(B/ kg•min),三个未知量:输液速度X(ml/h)、用药量Y(单位与B一致)、液体量Z(ml)。按1小时计算用药量:Akg•(B/kg•min)•60min=[(Xml/h•1h)/ Zml]•Y,经化去单位为A•B•60=(X/Z)•Y。临床用药时可根据具体情况设定三个未知量中的两个为已知量,则可求出第三个未知量。举例如下:一个3kg患儿需用多巴胺(设3ug/ kg•min)持续滴注24小时,输液速度不能超过3 ml/h,可用液量不能超过50ml。根据这一具体情况,先设定液体量为50ml,输液速度为2 ml/h,则代入公式:3×3ug×60=2÷50×Y,则Y=13500ug。具体配液时所需配液量则为50ml减去多巴胺已占液量。此公式最大优点是可根据临床实际情况灵活设定两个未知量满足具体需要而求出第三个未知量,临床值得推广。补液及液体复苏确实比较难,不仅要理论,还要经验! 常复查急诊生化,血气分析,对指导临床确实很重要.谢谢文天先生.下载后好好研究.重新复习一下生理学!讲的有道理!!!其实临床经验特别重要.讲的有道理!!!其实临床经验特别重要.小儿补液是儿科医生的基本功,尤其是基层医院,腹泻的小儿特别多,更是要熟练掌握。 有位同仁说能不能教点和临床紧密结合的,不要太教条,可以。我就说一个实用的方案:(天津方案)1、4:5:12:7液体,在这组液体里,4为1.2%的氯化钾,5为1.4%的SB,12为糖水,7为0.9%的生理盐水。4:5:12:7是他们之间的配比关系。这组液体的张力大约在1/2张到1/3张之间,是一组比较安全的液体,适用于各种性质的脱水。 2、4:5:6:7液体,各成分同上,只是糖水减半,大约1/2张。适用于高渗脱水。有的同仁会问我,为什么高渗脱水不补低张液?问的好,其实如果是高渗脱水,血浆比较粘稠,细胞处于皱缩状态,这个时候骤然补低张液体,会让皱缩的细胞骤然水肿膨胀,甚至破裂。会形成脑水肿的危险,所以建议高渗脱水一来不要补低渗液体,1/2张最安全。 当然脱水的程度判断是最重要的,如果是重度(丢失水分>体重的10%),则不管是高渗,低渗,还是等渗,首先按每公斤体重20ml补充2:1等张抢救液是不变的真理,迅速扩容。另外我上面说的液体中都有钾的成分,那么补钾也要按照金标准:见尿补钾。各程度脱水的补充量同教科书。 最后送个补液十六字口诀给各位同行:先快后慢,先盐后糖,先晶后胶,见尿补钾。血浆等胶体的东西一定要靠后用哦!its very useful for me涨了许多见识!这个小问题果然不简单,真的要好好研究才行开了眼界,长了见识!